

#askCERN

Hangout with CERN: All about SUSY 20 June 2013

ISOLTRAP measured mass of exotic calcium nuclei, establishing a new "magic number" related to the stability of this exotic species. The results cast light on how nuclei can be described in terms of the fundamental strong force.

Today's trivia question

How many of the particles in SUSY models have already been found?

What is Supersymmetry?

http://www.youtube.com/watch?v=0CeLRrBAI60#!

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS SUSY Searches* - 95% CL Lower Limits							AS Preliminary
Olali	Model	e , μ, τ, γ	Jets	\mathbf{E}_{T}^{miss}	$\int Ldt \ [fb^{-1}]$	Mass limit $\int Ldt = (4.4 - 20.7)$ to	S = 7,8 TeV Reference
Inclusive searches	$\begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{qq}, \overline{q} - q\overline{\chi}_1^{\alpha} \\ \overline{qq}, \overline{q} - q\overline{\chi}_1^{\alpha} \\ \overline{qq}, \overline{q} - q\overline{\chi}_1^{\alpha} \\ \overline{gg}, \overline{q} - q\overline{\chi}_1^{\alpha} \\ \overline{gg} - qqqql(l(l)\overline{\chi}_1^{\alpha}\overline{\chi}_1^{\alpha} \\ \overline{gg} - qqqql(l(l)\overline{\chi}_1^{\alpha}\overline{\chi}_1^{\alpha} \\ \overline{qg}, \overline{qqqql(l(l)}\overline{\chi}_1^{\alpha}\overline{\chi}_1^{\alpha} \\ \overline{qg}, \overline{qqqql(l)} \\ \overline{qg}, \overline{qqqql(l)} \\ \overline{qg}, \overline{qqqql(l)} \\ \overline{qg}, $	0 1 e, µ 0 0 1 e, µ 2 e, µ (SS) 2 e, µ 1-2 τ 2 γ 1 e, µ + γ 7 2 e, µ (Z) 0	2-6 jets 4 jets 7-10 jets 2-6 jets 2-6 jets 2-4 jets 3 jets 2-4 jets 0-2 jets 0 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 5.8 20.3 20.3 4.7 20.7 4.7 20.7 4.8 4.8 4.8 5.8 10.5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ATLAS-CONF-2013-047 ATLAS-CONF-2012-104 ATLAS-CONF-2013-054 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 1208.4688 ATLAS-CONF-2013-007 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
3 rd gen. ĝ med.	$\begin{array}{l} \widetilde{g} \rightarrow b \overline{b} \widetilde{\chi}_{1}^{0} \\ \widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0} \\ \widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0} \\ \widetilde{g} \rightarrow t \overline{t} \widetilde{\chi}_{1}^{0} \end{array}$	0 2 e, μ (SS) 0 0	3 b 0-3 b 7-10 jets 3 b	Yes No Yes Yes	12.8 20.7 20.3 12.8	G 1.24 TeV m(Ω ² ₁) < 200 GeV G 900 GeV m(Ω ² ₁) < 500 GeV	ATLAS-CONF-2012-145 ATLAS-CONF-2013-007 ATLAS-CONF-2013-054 ATLAS-CONF-2012-145
3 rd gen. squarks direct production	$\begin{split} \widetilde{\underline{b}}_{k}^{\perp}, \widetilde{\underline{b}}_{r} \to \widetilde{b}_{r}^{\wedge}, \\ \widetilde{\underline{b}}_{k}^{\perp}, \widetilde{\underline{b}}_{r} \to \widetilde{b}_{r}^{\wedge}, \\ \widetilde{\underline{b}}_{k}^{\perp}, \widetilde{\underline{b}}_{r} \to \widetilde{b}_{r}^{\wedge}, \\ \widetilde{\underline{b}}_{k}^{\perp}, (\operatorname{idgnh}), \widetilde{\underline{b}}_{r} \to \widetilde{b}_{k}^{\wedge}, \\ \widetilde{\underline{b}}_{k}^{\perp}, (\operatorname{idgnh}), \widetilde{\underline{b}}_{r} \to \widetilde{b}_{k}^{\vee}, \\ \widetilde{\underline{b}}_{k}^{\perp}, (\operatorname{idgnh}), \widetilde{\underline{b}}_{k} \to \widetilde{b}_{k}^{\vee}, \\ \widetilde{\underline{b}}_{k}^{\perp}, \widetilde{\underline{b}}_{k} \to \widetilde{b}_{k}^{\perp}, \\ \widetilde{\underline{b}}_{k}^{\perp}, \widetilde{\underline{b}}_{k} \to \widetilde{b}_{k}^{\perp}, \\ \widetilde{\underline{b}}_{k}^{\perp}, \widetilde{b}_{k}^{\perp}, \widetilde{b}_{k}^{\perp}, \\ \widetilde{b}_{k}^{\perp}, \\ \widetilde{b}_{k}^{\perp}, \widetilde{b}_{k}^{\perp}, \widetilde{b}_{k}^{\perp}, \\ \widetilde{b}_{k}^{\perp}$	0 2 e, µ (SS) 1-2 e, µ 2 e, µ 2 e, µ 0 1 e, µ 0 2 e, µ (Z) 3 e, µ (Z)	2 b 0-3 b 1-2 b 0-2 jets 2 b 1 b 2 b 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.7 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-053 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 ATLAS-CONF-2013-037 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$ \begin{array}{l} \widetilde{L}_{R}\widetilde{L}_{L}R,\widetilde{L}_{L}\!$	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ	0 0 0 0	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035
Long-lived particles	$\begin{array}{l} \text{Direct } \widetilde{\chi}_1^{\pm} \widetilde{\chi}_1^{\pm} \text{ prod., long-lived } \widetilde{\chi}_1^{\pm} \\ \text{Stable } g, \text{ R-hadrons} \\ \text{GMSB, stable } \widetilde{\jmath}, \text{ low } \beta \\ \text{GMSB, } \widetilde{\chi}_1^0 \rightarrow \gamma \text{G,long-lived } \widetilde{\chi}_1^0 \\ \widetilde{\chi}_1^0 \rightarrow \text{qq} \mu \text{ (RPV)} \end{array}$	0 0-2 e, μ 2 e, μ 2 γ 1 e, μ	1 jet 0 0 0 0	Yes Yes Yes Yes Yes	4.7 4.7 4.7 4.7 4.4	χ [±] 220 GeV 1 < τ(χ̃ [±]) < 10 ns g 985 GeV 1 τ 300 GeV 5 < tanβ < 20	1210.2852 1211.1597 1211.1597 1304.6310 1210.7451
RPV	$\begin{array}{l} LFV pp \rightarrow \widetilde{v}_\tau + X, \ \widetilde{v}_\tau \rightarrow e + \mu \\ LFV pp \rightarrow \widetilde{v}_\tau + X, \ \widetilde{v}_\tau \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \overline{\chi}_1^* \overline{\chi}_\tau, \ \overline{\chi}_1^* \rightarrow W \overline{\chi}_1^0, \ \widetilde{\chi}_1^0 \rightarrow e e \nu_\mu. e \mu \nu_e \\ \overline{\chi}_1^* \overline{\chi}_\tau, \ \overline{\chi}_1^* \rightarrow W \overline{\chi}_1^0, \ \widetilde{\chi}_1^0 \rightarrow \tau \tau \nu_e, e \tau v_\tau \\ \overline{g} \rightarrow q q \\ \overline{g} \rightarrow t_1, \ t_1 \rightarrow b s \end{array}$	2 e, μ 1 e, μ + τ 1 e, μ 4 e, μ 3 e, μ + τ 0 2 e, μ (SS)	0 0 7 jets 0 0 6 jets 0-3 b	- Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 4.6 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 1210.4813 ATLAS-CONF-2013-007
Other	Scalar gluon WIMP interaction (D5, Dirac χ) [s = 7 full d	0 0 TeV Is = ata partia	4 jets mono-jet 8 TeV al data	Yes Is = 8 full c	4.6 10.5 TeV lata	sgluon 100-287 GeV incl. limit from 1110.2693 m(χ) < 80 GeV, limit of < 687 GeV for D8 10 ⁻¹ 1 Mass scale [TeV]	1210.4826 ATLAS-CONF-2012-147

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

CERN's Accelerator complex

AD Antiproton Decelerator CTF3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight

The main 2013-14 LHC consolidations

1695 Openings and final reclosures of the interconnections Complete reconstruction of 1500 of these splices

Consolidation of the 10170 13kA splices, installing 27 000 shunts Installation of 5000 consolidated electrical insulation systems

300 000 electrical resistance measurements

10170 orbital welding of stainless steel lines

-171 8 Q

18 000 electrical Quality Assurance tests

10170 leak tightness tests

4 quadrupole magnets to be replaced

15 dipole magnets to be replaced

Installation of 612 pressure relief devices to bring the total to 1344

Consolidation of the 13 kA circuits in the 16 main electrical feedboxes

Today's trivia answer

Q. How many of the particles in SUSY models have already been found?

A. 6 leptons, 6 quarks, 6 bosons = 18

http://atlas.ch/blog/?p=1839

cern.ch/LHCathome

CERN Accelerating science

A Home Q Learn more! Stidrack Test4Theory

LHC@home is a platform for volunteers to help physicists develop and exploit particle accelerators like CERN's Large Hadron Collider, and to compare theory with experiment in the search for new fundamental particles.

By contributing spare processing capacity on their home and laptop computers, volunteers may run simulations of beam dynamics and particle collisions in the LHC's giant detectors.

Help us to study the LHC machine and its upgrade to understand the fundamental laws of the universe.

The Test4Theory project

Help us on the research about the elusive Higgs particle with our virtual atom smasher.

View details +

* Learn more *

http://www.quantumdiaries.org/author/cern/

http://opendays2013.web.cern.ch/

CERN opens its doors September 28th - 29th

CERN is the biggest particle physics laboratory in the world.

More than 10,000 physicists from all around the world come to CERN to carry out experiments whose aim is to advance the understanding of the fundamentals of matter and the nature of our universe.

To explore these new frontiers of knowledge, CERN has developed a chain of accelerators, culminating in the LHC, has installed enormous particle detectors, and has pushed technology to its limits.

News

Two full days for the general public! 03/05/2013

CERN will open its doors to the general public over two days and not just one as it was the case in 2004 and 2008.

There is a great deal of interest in what is happening at CERN so we expect a very large number of visitors.

As there are only a limited number of visit points, spreading the visits over two days will give many more people a chance to experience the fascinating things on show.

We have also extended the opening hours to 09:00-20:00 each day.

Next week's Hangout with CERN

- Thursday 27 June, same time 17:00 CEST
 - Dark Matter
- Next week is the last hangout in the series 3
- Series 4 is planned for after the open days

Participants

John Ellis, theorist, King's College London Xavier Portell Bueso, ATLAS experiment Josh Thompson, CMS experiment Jayendra Minakshisundar, student intern

Credits

Freya Blekman — Host

Seth Zenz — Q&A from Social Media

Achintya Rao, Kate Kahle and Kelly Izlar — Production

Thank you for watching!

www.cern.ch